
• We use counts of cfDNA reads that align to CHESS gene bodies from 817 
samples (Wan et al. 2018).  In addition to a disease label of healthy or CRC, 
each sample has associated an institution where it originated, age when the 
blood was drawn, and batch which it was processed. We grouped age into 
the bins: [0-50, 50-55, 55-60, 60-75, 75-80, 80-85, 85+]. 

• We apply all three methods to generate a set of embeddings for each over 
identical folds of k-fold cross validated data (k=4).  We subsequently trained 
classifiers to predict each of the 4 sets of labels using both K-Nearest 
Neighbor (KNN) and Logistic Regression (LR).

BACKGROUND
• High-dimensional data acquired from biological experiments, such as next-

generation sequencing of cfDNA in blood plasma, are subject to a number of 
confounding effects.

• These confounders pose a challenge when developing solutions to pattern 
recognition problems using biological data because they can obscure the 
biological signal of interest. Visualizations of data show institution-specific 
clustering/shifts

• As an example, previous studies found that an estimated 32% of variability in 
the 1000 Genomes Project dataset can be explained by sequencing date 
(Leek et al., 2010). 

• Prior work such as Hidden Covariates with Prior (HCP) (Mostafavi et al., 
2013), used mixed effects models to adjust for confounder effects. HCP learns 
a Gaussian model where the observations !", follow a distribution 
parameterized by the sum of the true latent signal ", known covariates #$, and 
unknown sources of covariates %&. 

• We propose a Metric Learning based model to normalize out confounder 
signal.

• Metric learning methods are advantageous because the loss function 
requires only the variable of interest to normalize, as opposed to mixed 
effects models which also require accurately labelled annotations.OBJECTIVE

Figure 1. Network Architecture

Figure 2. Embedding Generation/Evaluation Pipeline
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Figure 4. Disease status / Covariate Prediction Task Performance
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METCC: METric learning for Confounder Control
Making distance matter in high dimensional biological analysis

METHODS

We analyze:

1. the extent to which data normalized with HCP and METCC retains 
information about the unwanted technical effects; and

2. the performance of supervised models trained on normalized data.

• Let % be an ' × ) matrix of observed biological data with n samples and p 
measurements. Let y be a biological variable of interest such as phenotype 
label or disease status.

• We seek to learn a distance function *+ parameterized by the map ,: ℝ/ →
ℝ1 where the distance between two samples 23 and 24 is determined by 

*+(23, 24) = , 23 − , 24 : .

• The objective is to transform the data via , so that the variability measured 
between samples 23 and 24 is low when ;3 = ;4 and high when ;3 ≠ ;4. This 
can be optimized using a contrastive, or Siamese, loss function proposed by 
Hadsell et al.

• Such approaches have been extended and shown to produce better 
representations when both positive and negative class sample are used for 
each "anchor" sample (Hoffer et al., 2014).

• The "Triplet" extension of this approach used in our experiments runs a triplet 
of samples (2, 2=, 2>) through *+ and defines ?= = *+(2, 2=)
and ?> = *+(2, 2>) so as to minimize ?>, ?= − 1 :: (Balntas et al., 2016).

Architecture of triplet network used.

Construction of the 3 normalizations. Choices were made to ensure equal 
dimensionality among them. Classifiers were trained with K=21 for KNN and a 
random search for regularization weight for each fold for LR.

Intuition:
1. minimize distance between representations of examples that 

have the same label (L = 0)
2. maximize distance between representations of examples with 

different labels (L = 1)

AB,CD'+ 1 − E *+ 23, 24
: + E CA2 0, C −*+ 23, 24

:

• Penalizes variance that is not correlated to disease prediction task 
(e.g. batch effects).

METHODS, cont’d

• We are able to train METCC embeddings where label distance is learned. 
Visualized with tSNE are one fold of embeddings normalized by HCP and 
METCC respectively.

• METCC embeddings when trained with LR achieved comparable 
performance.

• With KNN, disease performance far exceeded other embeddings, but 
performance on covariate predictions were not significantly different.

• METCC allows us to apply black box metric techniques to confounder 
normalization. This allows us to account for confounding effects without 
having a priori knowledge of these effects, labels to which can be rare or 
hard to procure.

• Embeddings generated with METCC can outperform embeddings normalized 
with a mixed effects model in a biological prediction task.

• HCP appears to retain slightly more covariate signal in the data than 
METCC.

• Future work intends to compare black box metric learning models to non-
linear mixed effects models. 

• We intend to do further exploration into the question of how best we can 
compare a supervised approach, like METCC that separates based on label, 
to embeddings generated by unsupervised techniques.

DATASET CONFOUNDING

EXPERIMENTAL SETUP

Table 1. Mean k-fold Prediction Task Performance (k=4)

Figure 3. Comparison of tSNE of HCP and METCC embeddings

Figure 4 and Table 1 depict classification performance. Area Under the Receiver 
Operating Characteristics (AUC) was used to measure disease status prediction 
performance. Accuracy (ACC) was used to measure institution, batch, and age-bin 
tasks which are not binary classification.

• METCC may not lose information about age due to the fact that the disease 
label is a clear confounder, which was used to train METCC embeddings.

Figure 5. Known covariate distribution in cfDNA dataset

Figure 6. Disease status is confounded by age

• Performance drop in disease classification can be interpreted as a proxy 
measure of how much information is lost to the normalization process. 
Prediction of other labels can be interpreted as a measure of how much 
confounder information is left in the embeddings after normalization.


